13 GAS CHROMATOGRAPHY	Page 1 of 3
Division of Forensic Science	Amendment Designator:
TRACE EVIDENCE TRAINING MANUAL	Effective Date: 29-March-2004

13 GAS CHROMATOGRAPHY (GC)

13.1 Introduction to Gas Chromatography

13.1.1 Objectives

Through completion of this module the trainee will have developed and demonstrated theoretical knowledge and/or practical skills to:

- Describe the basic theory and draw a basic diagram of the major components of the instrument;
- Describe the capabilities and limitations of the instrument;
- Describe the practical applications of gas chromatography; and,
- Define gas chromatography terminology.

13.1.2 Required Readings

- 13.1.2.1 Braithwaite, A., and Smith, F.J., <u>Chromatographic Methods</u>, 4th ed., Chapman and Hall, Ltd., New York, NY, 1985, Chapters 1, 2 & 5.
- 13.1.2.2 Freeman, R. R., ed., et.al., <u>High Resolution Gas Chromatography</u>, 2nd edition, Hewlett Packard Co., 1989
- 13.1.2.3 Willard, H. H., Merritt, L.L., and Dean, J.A., <u>Instrumental Methods of Analysis</u>, 5th edition, Van Nostrand, New York, NY, 1974, Chapter 19.
- 13.1.2.4 Rood, Dean., <u>A Practical Guide to the Care, Maintenance, and Troubleshooting of Capillary Gas Chromatographic Systems</u>, 3rd edition, Wiley-VCH, Federal Republic of Germany, 1999.

13.1.3 Questions

The trainee will provide written answers to the following questions:

- Describe a gas chromatograph using layman's terms.
- Draw a basic gas chromatograph and label the major components. Describe the purpose of each component.
- Define the following terms:
 - o Distribution coefficient
 - Capacity factor
 - o Phase ratio
 - Selectivity
 - o Separation efficiency
 - Resolution
 - Retention time
 - o Theoretical plates and HETP
 - VanDeemter and Golay equations
 - Linear velocity and eddy diffusion
- Define carrier gas, describe various types and what parameters are used in selecting the proper carrier gas.
- Describe the inlet system.
- Describe septum bleed and purge.
- Describe and draw split and splitless injection.
- Describe solvent effects.
- Compare capillary columns versus packed columns.

13 GAS CHROMATOGRAPHY	Page 2 of 3
Division of Forensic Science	Amendment Designator:
TRACE EVIDENCE TRAINING MANUAL	Effective Date: 29-March-2004

- Define stationary phase and list examples of different types of stationary phases.
- Define cross-linking.
- Explain column overload and its effects.
- Compare/contrast isothermal programming versus temperature programming and their application in the Trace Evidence laboratory.
- Give a general description of the different types of detectors. Give detailed information regarding the ECD and the FID. Include sensitivity, make-up gas and function in the description of each detector.

13.1.4 Evaluation

- 13.1.4.1 The trainer will review the written answers to the questions with the trainee.
- 13.1.4.2 The trainer and the trainee will review and discuss the pertinent points of each of the required readings.
- 13.1.4.3 The trainee will be quizzed orally upon the subject matter.

13.2 Sample Preparation and Data Collection

13.2.1 Objectives

Through completion of this module the trainee will have developed and demonstrated theoretical knowledge and/or practical skills to:

- Prepare and inject samples to include gases, liquids and solids; and,
- Discuss and perform the quality assurance/quality control requirements for the Trace Evidence gas chromatographs.

13.2.2 Required Readings

13.2.2.1 Trace Evidence Section Standard Operating Procedures for gas chromatography.

13.2.3 Questions

The trainee will provide written answers to the following questions:

• Describe the daily and monthly QC checks for all of the gas chromatographs. Include discussion as to why each check is performed.

13.2.4 Practical Exercises

- 13.2.4.1 The trainer will demonstrate the daily and monthly QC procedures for the gas chromatographs.
- 13.2.4.2 The trainee will perform the daily QC procedures for the gas chromatographs for a minimum of one week.
- 13.2.4.3 The trainee will perform the monthly QC procedures for the gas chromatographs for a minimum of four months.
- 13.2.4.4 The trainer will demonstrate headspace injections.

13.2.5 Evaluation

13.2.5.1 The trainer will review the written answers to the questions with the trainee.

13 GAS CHROMATOGRAPHY	Page 3 of 3
Division of Forensic Science	Amendment Designator:
TRACE EVIDENCE TRAINING MANUAL	Effective Date: 29-March-2004

13.2.5.2 The trainer and the trainee will review and discuss the pertinent points of each of the required readings.

13.2.5.3 Review of practical exercises.

13.3 Competency Evaluation and Mock Trial

The trainee will use gas chromatography when completing their subdiscipline competency test and will defend their results as a part of their mock trial in that subdiscipline.

13.4 Reading List

- 13.4.1 Braithwaite, A., and Smith, F.J., <u>Chromatographic Methods</u>, 4th ed., Chapman and Hall, Ltd., New York, NY, 1985.
- 13.4.2 Freeman, R. R., ed., et.al., <u>High Resolution Gas Chromatography</u>, 2nd edition, Hewlett Packard Co., 1989.
- 13.4.3 Rood, Dean., <u>A Practical Guide to the Care, Maintenance, and Troubleshooting of Capillary Gas Chromatographic Systems</u>, 3rd edition, Wiley-VCH, Federal Republic of Germany, 1999.
- 13.4.4 Trace Evidence Section Standard Operating Procedures for gas chromatography.
- 13.4.5 Willard, H. H., Merritt, L.L., and Dean, J.A., <u>Instrumental Methods of Analysis</u>, 5th edition, Van Nostrand, New York, NY, 1974.

⋖End